Generating power from transdermal extracts using a multi-electrode miniature enzymatic fuel cell.
نویسندگان
چکیده
The development of self-powered wearable biodevices is highly attractive for a number of applications, such as health monitoring and drug delivery. Enzymatic fuel cells (EFCs) hold great potential as power sources for such devices, since they can generate power from physiological fluids and operate at body temperature. In this study, we present a cascade of three EFCs embedded in a compact and handy single channel device and we demonstrate for the first time power generation from iontophoresis extracts obtained from pig skin. The EFCs implement non-toxic highly-porous gold electrodes; an easy-to-reproduce procedure is adopted for the immobilization of glucose oxidase and laccase at the anode and cathode respectively; no external mediators are used; and the system design can easily be further miniaturized. When electrically connected in parallel, the EFCs generated a power output close to the sum of the power generated by each unit, with peak values of 0.7 µW (flow-through mode) and 0.4 µW (batch mode), at a glucose concentration of 27 mM. When the device was fed with transdermal extracts, containing only 30 μM of glucose, the average peak power was proportionally lower (0.004 µW).
منابع مشابه
Multi-level Energy Management Strategy for Fuel Cell Vehicle Based on Battery Combined Efficiency and Identification of Vehicle Operation State
The design of energy management strategy is one of the main challenges in the development of fuel cell electric vehicles. The proposed strategy should be well responsive to provide demanded power of fuel cell vehicle for motion, acceleration, and different driving conditions, resulting in reduced fuel consumption, increased lifetime of power sources and increased overall fuel efficiency. The pu...
متن کاملA biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes.
A miniature-microbial fuel cell (mini-MFC, chamber volume: 1.2 mL) was used to monitor biofilm development from a pure culture of Shewanella oneidensis DSP10 on graphite felt (GF) under minimal nutrient conditions. ESEM evidence of biofilm formation on GF is supported by substantial power density (per device cross-section) from the mini-MFC when using an acellular minimal media anolyte (1500 mW...
متن کاملA biofilm enhanced miniature microbial fuel cell using <i>Shewanella oneidensis</i> DSP10 and oxygen reduction cathodes
A miniature-microbial fuel cell (mini-MFC, chamber volume: 1.2 mL) was used to monitor biofilm development from a pure culture of Shewanella oneidensis DSP10 on graphite felt (GF) under minimal nutrient conditions. ESEM evidence of biofilm formation on GF is supported by substantial power density (per device cross-section) from the mini-MFC when using an acellular minimal media anolyte (1500 mW...
متن کاملPerformance of a Dual Chamber Microbial Fuel Cell using Sodium Chloride as Catholyte
Microbial fuel cell represents an emerging technology to attain electrical energy from wastewater. There are several alternative methods available for wastewater treatment; Microbial fuel cell is one of them, which generates green energy from wastewater for making a contribution to renewable sources of energy. This study states the performance of microbial fuel cell with different parameters i....
متن کاملPerformance of a Dual Chamber Microbial Fuel Cell using Sodium Chloride as Catholyte
Microbial fuel cell represents an emerging technology to attain electrical energy from wastewater. There are several alternative methods available for wastewater treatment; Microbial fuel cell is one of them, which generates green energy from wastewater for making a contribution to renewable sources of energy. This study states the performance of microbial fuel cell with different parameters i....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biosensors & bioelectronics
دوره 78 شماره
صفحات -
تاریخ انتشار 2016